4.8 Article

Block copolymer micelles with acid-labile ortho ester side-chains: Synthesis, characterization, and enhanced drug delivery to human glioma cells

期刊

JOURNAL OF CONTROLLED RELEASE
卷 151, 期 1, 页码 18-27

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2010.12.005

关键词

Block copolymer; Micelles; Ortho ester; Anticancer drug delivery; Glioma

资金

  1. NIH [R01CA129189]
  2. NSF [BES 0547613]
  3. Chinese Program for New Century Excellent Talents in Universities [NCET-10-0435]
  4. National Natural Science Foundation of China [21004030, 50873080]
  5. Natural Science Foundation of Jiangsu Province of China [BK2010145]
  6. Fundamental Research Funds for the Central Universities of China [JUSRP21013]

向作者/读者索取更多资源

A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC50 values of the Dox-loaded micelles were approximately ten-times (by 24 h) and three-times (by 48 h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results establish the PEG-b-PEYM block copolymer with acid-labile ortho ester side-chains as a novel and effective pH-responsive nano-carrier for enhancing the delivery of drugs to cancer cells. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据