4.8 Article

Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery

期刊

JOURNAL OF CONTROLLED RELEASE
卷 154, 期 1, 页码 84-92

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2011.04.023

关键词

Hexagonal nanoparticles; Drug delivery; Phagocytosis; Pharmacokinetic

资金

  1. National Science Council of the Republic of China, Taiwan [98-2320-B-033-002-MY2]

向作者/读者索取更多资源

Target geometry for mitigating phagocytosis has garnered considerable attention recently in the drug delivery field. This study examined nanoparticles (NPs) with same volume but different shapes, namely, spherical NPs (SNPs) and hexagonal nanoprisms (HNPs), and analyzed their behaviors in vitro and in vivo. These NPs were constructed with a multifunctional block copolymer component, mPEG-b-P(HEMA-co-histidine-PLA). Geometry of SNPs and HNPs was controlled by adjusting copolymer properties and particle size was controlled by adjusting formulation parameters. Nanoparticle morphology had no effect in mitigating phagocytosis when NP size was 70 nm; however, morphology had a significant effect when NP size was 120 nm. The radioactivity-time curves for Tc-99m-labeled NPs, fitted by the two-compartment pharmacokinetic model, show that the prolonged plasma distribution half-life of HNPs is indicative in the bloodstream. The in vitro and in vivo studies reveal that dual stealth characteristics, pegylation and hexagonal prism structure, of nanocarriers can be adopted in clinical application for safe and efficient delivery of cancer therapy. Crown Copyright (c) 2011 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据