4.8 Article Proceedings Paper

Release of DNA from polyelectrolyte multilayers fabricated using 'charge-shifting' cationic polymers: Tunable temporal control and sequential, multi-agent release

期刊

JOURNAL OF CONTROLLED RELEASE
卷 148, 期 1, 页码 91-100

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2010.07.112

关键词

Layer-by-Layer; Polyelectrolyte; Thin film; DNA delivery; Surface-mediated

资金

  1. Direct For Mathematical & Physical Scien
  2. Division Of Materials Research [832760] Funding Source: National Science Foundation
  3. NIBIB NIH HHS [R01 EB006820, R01 EB006820-03] Funding Source: Medline

向作者/读者索取更多资源

We report an approach to the design of multilayered polyelectrolyte thin films (or 'polyelectrolyte multilayers', PEMs) that can be used to provide tunable control over the release of plasmid DNA (or multiple different DNA constructs) from film-coated surfaces. Our approach is based upon methods for the layer-by-layer assembly of DNA-containing thin films, and exploits the properties of a new class of cationic 'charge-shifting' polymers (amine functionalized polymers that undergo gradual changes in net charge upon side chain ester hydrolysis) to provide control over the rates at which these films erode and release DNA. We synthesized two 'charge-shifting' polymers (polymers 1 and 2) containing different side chain structures by ring-opening reactions of poly(2-alkenyl azlactone)s with two different tertiary amine functionalized alcohols (3-dimethylamino-1-propanol and 2-dimethylaminoethanol, respectively). Subsequent characterization revealed large changes in the rates of side chain ester hydrolysis for these two polymers; whereas the half-life for the hydrolysis of the esters in polymer 1 was similar to 200 days, the half-life for polymer 2 was similar to 6 days. We demonstrate that these large differences in side chain hydrolysis make possible the design of PEMs that erode and promote the surface-mediated release of DNA either rapidly (e.g., over similar to 3 days for films fabricated using polymer 2) or slowly (e.g., over similar to 1 month for films fabricated using polymer 1). We demonstrate further that it is possible to design films with release profiles that are intermediate to these two extremes by fabricating films using solutions containing different mixtures of these two polymers. This approach can thus expand the usefulness of these two polymers and achieve a broader range of DNA release profiles without the need to synthesize polymers with new structures or properties. Finally, we demonstrate that polymers 1 and 2 can be used to fabricate multilayered films with hierarchical structures that promote the sequential release of two different DNA constructs with separate and distinct release profiles (e.g., the release of a first construct over a period of similar to 3 days, followed by the sustained release of a second for a period of similar to 70 days). With further development, this approach could contribute to the design of functional thin films and surface coatings that provide sophisticated control over the timing and the order of the release of two or more DNA constructs (or other agents) of interest in a range of biomedical contexts. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据