4.8 Article

Intramuscular drug transport under mechanical loading: Resonance between tissue function and uptake

期刊

JOURNAL OF CONTROLLED RELEASE
卷 136, 期 2, 页码 99-109

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2009.01.016

关键词

Muscle; Strain; Contraction; Transport; Pharmacokinetics

资金

  1. NHLBI NIH HHS [R01HL049039] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM049039, R01 GM049039-12] Funding Source: Medline

向作者/读者索取更多资源

Dynamic architecture and motion in mechanically active target tissues can influence the pharmacokinetics of locally delivered agents. Drug transport in skeletal muscle under controlled mechanical loads was investigated. Static (0-20%) and cyclic (+/-2.5% amplitude, 0-20% mean, 1-3 Hz) strains and electrically paced isometric contractions (0.1-3 Hz, 0% strain) were applied to rat soleus incubated in 1 mM 20 kDa FITC-dextran. Dextran penetration, tissue porosity, and active force-length relationship over 0-20% strain correlated (r = 0.9-1.0), and all increased 1.5-fold from baseline at 0% to a maximum at 10% (Lo), demonstrating biologic significance of Lo and impact of fiber size and distribution on function and pharmacokinetics. Overall penetration decreased but relative enhancement of penetration at Lo increased with dextran size (4-150 kDa). Penetration increased linearly (0.084 mm/Hz) with cyclic stretch, demonstrating dispersion. Penetration increased with contraction rate by 1.5-fold from baseline to a maximum at 0.5 Hz, revealing architectural modulation of dispersion. Impact of architecture and dispersion on intramuscular transport was computationally modeled. Mechanical architecture and function underlie intramuscular pharmacokinetics and act in concert to effect resonance between optimal physiologic performance and drug uptake. Therapeutic management of characteristic function in tissue targets may enable a physiologic mechanism for controlled drug transport. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据