4.8 Article

Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice

期刊

JOURNAL OF CONTROLLED RELEASE
卷 127, 期 1, 页码 41-49

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2007.12.014

关键词

hydrophobically modified glycol chitosan; self-assembled nanoparticles; cisplatin; drug delivery system; passive tumor targeting; in vivo antitumor efficacy

资金

  1. Korea Evaluation Institute of Industrial Technology (KEIT) [B0008463] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  2. Korea Health Promotion Institute [A062254] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  3. Ministry of Education, Science & Technology (MoST), Republic of Korea [2E20610] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

To make a tumor targeting nano-sized drug delivery system, biocompatible and biodegradable glycol chitosan (M-W=250 kDa) was modified with hydrophobic cholanic acid. The resulting hydrophobically modified glycol chitosans (HGCs) that formed nano-sized self-aggregates in an aqueous medium were investigated as an anticancer drug carrier in cancer treatment. Insoluble anticancer drug, cisplatin (CDDP), was easily encapsulated into the hydrophobic cores of HGC narroparticles by a dialysis method, wherein the drug loading efficiency was about 80%. The CCDP-encapsulated HGC (CDDP-HGC) nanoparticles were well-dispersed in aqueous media and they formed a nanoparticles structure with a mean diameter about 300-500 nm. As a nano-sized drug carrier, the CDDP-HGC nanoparticles released the drug in a sustained manner for a week and they were also less cytotoxic than was free CDDP, probably because of sustained release of CDDP from the HGC narroparticles. The tumor targeting ability of CDDP-HGC nanoparticles was confirmed by in vivo live animal imaging with near-infrared fluorescence Cy5.5-labeled CDDP-HGC nanoparticles. It was observed that CDDP-HGC nanoparticles were successfully accumulated by tumor tissues in tumor-bearing mice, because of the prolonged circulation and enhanced permeability and retention (EPR) effect of CDDP-HGC narroparticles in tumor-bearing mice. As expected, the CDDP-HGC nanoparticles showed higher antitumor efficacy and lower toxicity compared to free CDDP, as shown by changes in tumor volumes, body weights, and survival rates, as well as by immunohistological TUNEL assay data. Collectively, the present results indicate that HGC nanoparticles are a promising carrier for the anticancer drug CDDP. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据