4.4 Article

Elaborate ligand-based modeling reveal new submicromolar Rho kinase inhibitors

期刊

JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN
卷 26, 期 2, 页码 249-266

出版社

SPRINGER
DOI: 10.1007/s10822-011-9509-y

关键词

Rho kinase II; ROCK II; Pharmacophore modeling; Quantitative structure-activity relationship; In silico screening; Cardiovascular diseases

资金

  1. Faculty of Graduate Studies
  2. Scientific Research and Hamdi-Mango Center for Scientific Research at the University of Jordan

向作者/读者索取更多资源

Rho Kinase (ROCKII) has been recently implicated in several cardiovascular diseases prompting several attempts to discover and optimize new ROCKII inhibitors. Towards this end we explored the pharmacophoric space of 138 ROCKII inhibitors to identify high quality pharmacophores. The pharmacophoric models were subsequently allowed to compete within quantitative structure-activity relationship (QSAR) context. Genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of accessing self-consistent QSAR of optimal predictive potential (r (77) = 0.84, F = 18.18, r (LOO) (2) = 0.639, r (PRESS) (2) against 19 external test inhibitors = 0.494). Two orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least two binding modes accessible to ligands within ROCKII binding pocket. Receiver operating characteristic (ROC) curve analyses established the validity of QSAR-selected pharmacophores. Moreover, the successful pharmacophores models were found to be comparable with crystallographically resolved ROCKII binding pocket. We employed the pharmacophoric models and associated QSAR equation to screen the national cancer institute (NCI) list of compounds Eight submicromolar ROCKII inhibitors were identified. The most potent gave IC50 values of 0.7 and 1.0 mu M.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据