4.7 Article

Towards an ultra efficient kinetic scheme. Part II: The high order case

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 255, 期 -, 页码 699-719

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2013.07.017

关键词

Kinetic equations; Discrete velocity models; Semi-Lagrangian schemes; Boltzmann-BGK equation; Euler solver; High order scheme

向作者/读者索取更多资源

In a recent paper we presented a new ultra efficient numerical method for solving kinetic equations of the Boltzmann type (Dimarco and Loubere, 2013) [17]. The key idea, on which the method relies, is to solve the collision part on a grid and then to solve exactly the transport part by following the characteristics backward in time. On the contrary to classical semi-Lagrangian methods one does not need to reconstruct the distribution function at each time step. This allows to tremendously reduce the computational cost and to perform efficient numerical simulations of kinetic equations up to the six-dimensional case without parallelization. However, the main drawback of the method developed was the loss of spatial accuracy close to the fluid limit. In the present work, we modify the scheme in such a way that it is able to preserve the high order spatial accuracy for extremely rarefied and fluid regimes. In particular, in the fluid limit, the method automatically degenerates into a high order method for the compressible Euler equations. Numerical examples are presented which validate the method, show the higher accuracy with respect to the previous approach and measure its efficiency with respect to well-known schemes (Direct Simulation Monte Carlo, Finite Volume, MUSCL, WENO). (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据