4.7 Article

A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 255, 期 -, 页码 572-589

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2013.07.029

关键词

Navier-Stokes equations; Finite difference methods; Instability of boundary layers; Direct numerical simulations; Supersonic and hypersonic flows; Chemically reactive flows; Viscosity; diffusion; and thermal; conductivity; Thermodynamic properties; equations of; state

资金

  1. European Research Council [259354]
  2. National Aeronautics and Space Administration (NASA) [NNX07AC29A]

向作者/读者索取更多资源

A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier-Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier-Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of nonequilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据