4.7 Article

An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 230, 期 21, 页码 7830-7839

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2011.07.003

关键词

Alternating-direction method; Anomalous diffusion; Circulant matrix; Fast Fourier transform; Fractional diffusion equation; Toeplitz matrix

资金

  1. National Science Foundation [EAR-0934747]
  2. Division Of Earth Sciences
  3. Directorate For Geosciences [0934747] Funding Source: National Science Foundation

向作者/读者索取更多资源

Fractional diffusion equations model phenomena exhibiting anomalous diffusion that cannot be modeled accurately by the second-order diffusion equations. Because of the nonlocal property of fractional differential operators, the numerical methods for fractional diffusion equations often generate dense or even full coefficient matrices. Consequently, the numerical solution of these methods often require computational work of O(N-3) per time step and memory of O(N-2) for where N is the number of grid points. In this paper we develop a fast alternating-direction implicit finite difference method for space-fractional diffusion equations in two space dimensions. The method only requires computational work of O(N log(2)N) per time step and memory of O(N), while retaining the same accuracy and approximation property as the regular finite difference method with Gaussian elimination. Our preliminary numerical example runs for two dimensional model problem of intermediate size seem to indicate the observations: To achieve the same accuracy, the new method has a significant reduction of the CPU time from more than 2 months and 1 week consumed by a traditional finite difference method to 1.5 h, using less than one thousandth of memory the standard method does. This demonstrates the utility of the method. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据