4.7 Article

Improved Riemann solvers for complex transport in two-dimensional unsteady shallow flow

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 230, 期 19, 页码 7202-7239

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2011.05.022

关键词

Multi-component transport; Solute fix; Weak solutions; Well-balanced approach; Roe solver; HLLC solver; Diffusion correction; Upwind reactive terms

资金

  1. Spanish Ministry of Science and Technology [CGL2008-05153-C02-02]

向作者/读者索取更多资源

The numerical solution of advection-reaction-diffusion transport problems in two-dimensional shallow water flow is split in three subproblems in order to analyze them separately. In the first part, the advection component is solved with the help of an extended Jacobian matrix for the coupled system of flow and advection conservation laws and focusing on the correct definitions of the approximate or weak solutions. Considering that one of the conserved quantities is the solute volume, nonphysical solutions for the solute concentration may appear in complex situations and a solute fix is proposed. This is formulated for first and second order schemes. In the second part of this work, the solution of problems with volumetric reaction terms is studied and the results of single-step as well as multi-step pointwise and upwind approaches are compared in order to establish their relative performance. The upwind treatment is done in 2D cases dividing cell volumes to transform reacting terms in singular source terms. The third part is concerned with the diffusion term. The focus of this part is put on the interference between numerical and physical diffusion. A simple form to estimate the magnitude of the numerical diffusion is proposed and it is shown to improve the accuracy of the results in first and second order approaches. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据