4.7 Article

Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 229, 期 3, 页码 642-659

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2009.10.001

关键词

Fluid-structure interaction; Blood flow; Mesh movement; Restricted additive Schwarz; Domain decomposition; Parallel computing

资金

  1. DOE [DE-FC02-04ER25595]
  2. NSF [CCF-0634894, CNS-0722023, DMS-0913089]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Mathematical Sciences [0913089] Funding Source: National Science Foundation

向作者/读者索取更多资源

We introduce and study numerically a scalable parallel finite element solver for the simulation of blood flow in compliant arteries. The incompressible Navier-Stokes equations are used to model the fluid and coupled to an incompressible linear elastic model for the blood vessel walls. Our method features an unstructured dynamic mesh capable of modeling complicated geometries, an arbitrary Lagrangian-Eulerian framework that allows for large displacements of the moving fluid domain, monolithic coupling between the fluid and structure equations, and fully implicit time discretization. Simulations based on blood vessel geometries derived from patient-specific clinical data are performed on large super-computers using scalable Newton-Krylov algorithms preconditioned with an overlapping restricted additive Schwarz method that preconditions the entire fluid-structure system together. The algorithm is shown to be robust and scalable for a variety of physical parameters, scaling to hundreds of processors and millions of unknowns. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据