4.7 Article

A systematic methodology for constructing high-order energy stable WENO schemes

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 228, 期 11, 页码 4248-4272

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2009.03.002

关键词

High-order finite difference methods; Weighted essentially non-oscillatory schemes; Energy estimate; Numerical stability; Artificial dissipation

向作者/读者索取更多资源

A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by the authors of this paper [N.K Yamaleev, M.H. Carpenter, Third-order energy stable WENO scheme, J. Comput. Phys. 228 (2009) 3025-3047] was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables energy stable modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes including one sixth-order central scheme; ESWENO schemes up to eighth order are presented in the Appendix. We also develop new weight functions and derive constraints on their parameters, which provide consistency, much faster convergence of the high-order ESWENO schemes to their underlying linear schemes for smooth solutions with arbitrary number of vanishing derivatives, and better resolution near strong discontinuities than the conventional counterparts. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据