4.7 Article

An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 227, 期 11, 页码 5649-5670

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2008.02.015

关键词

discontinuous Galerkin schemes; nonlinear unsteady diffusion equations; high order accuracy; space-time approach; numerical flux for heat conduction; local time-stepping

向作者/读者索取更多资源

In this paper we propose a discontinuous Galerkin scheme for the numerical approximation of unsteady heat conduction and diffusion problems in multi dimensions. The scheme is based on a discrete space-time variational formulation and uses an explicit approximative solution as predictor. This predictor is obtained by a Taylor expansion about the barycenter of each grid cell at the old time level in which all time or mixed space-time derivatives are replaced by space derivatives using the differential equation several times. The heat flux between adjacent grid cells is approximated by a local analytical solution. It takes into account that the approximate solution may be discontinuous at grid cell interfaces and allows the approximation of discontinuities in the heat conduction coefficient. The presented explicit scheme has to satisfy a typical parabolic stability restriction. The loss of efficiency, especially in the case of strongly varying sizes of cells in unstructured grids, is circumvented by allowing different time steps in each grid cell which are adopted to the local stability restrictions. We discuss the linear stability properties in this case of varying diffusion coefficients, varying space increments and local time steps and extent these considerations also to a modified symmetric interior penalization scheme. In numerical simulations we show the efficiency and the optimal order of convergence in space and time. (c) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据