4.7 Article

Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 227, 期 24, 页码 10040-10057

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2008.08.011

关键词

Hydrodynamics; Methods: numerical; Smoothed particle hydrodynamics (SPH); Kelvin-Helmholtz instability; Contact discontinuities; Artificial surface tension

资金

  1. Royal Society University Research Fellowship

向作者/读者索取更多资源

In this paper we discuss the treatment of discontinuities in smoothed particle hydrodynamics (SPH) simulations. In particular we discuss the difference between integral and differential representations of the fluid equations in an SPH context and how this relates to the formulation of dissipative terms for the capture of shocks and other discontinuities. This has important implications for many problems, in particular related to recently highlighted problems in treating Kelvin-Helmholtz instabilities across entropy gradients in SPH. The specific problems pointed out by Agertz et al. [O.Agertz, B. Moore, J. Stadel, D. Potter, F. Miniati, J. Read, L. Mayer, A. Gawryszczak, A. Kravtsov, A. Nordlund, F. Pearce, V. Quilis, D. Rudd, V. Springel, J. Stone, E. Tasker, R. Teyssier, J. Wadsley, R. Walder, Fundamental differences between SPH and grid methods, MNRAS 380 (2007) 963-978] are shown to be related in particular to the (lack of) treatment of contact discontinuities in standard SPH formulations which can be cured by the simple application of an artificial thermal conductivity term. We propose a new formulation of artificial thermal conductivity in SPH which minimises dissipation away from discontinuities and can therefore be applied quite generally in SPH calculations. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据