4.7 Article

On the evaluation of layer potentials close to their sources

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 227, 期 5, 页码 2899-2921

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2007.11.024

关键词

numerical integration; potential theory; fast solvers; singular integrals; multiply connected domains; integral equations; Dirichlet-Neumann map

向作者/读者索取更多资源

When solving elliptic boundary value problems using integral equation methods one may need to evaluate potentials represented by a convolution of discretized layer density sources against a kernel. Standard quadrature accelerated with a fast hierarchical method for potential field evaluation gives accurate results far away from the sources. Close to the sources this is not so. Cancellation and nearly singular kernels may cause serious degradation. This paper presents a new scheme based on a mix of composite polynomial quadrature, layer density interpolation, kernel approximation, rational quadrature, high polynomial order corrected interpolation and differentiation, temporary panel mergers and splits, and a particular implementation of the GMRES solver. Criteria for which mix is fastest and most accurate in various situations are also supplied. The paper focuses on the solution of the Dirichlet problem for Laplace's equation in the plane. In a series of examples we demonstrate the efficiency of the new scheme for interior domains and domains exterior to up to 2000 close-to-touching contours. Densities are computed and potentials are evaluated, rapidly and accurate to almost machine precision, at points that lie arbitrarily close to the boundaries. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据