4.7 Article

A quadrature-based moment method for dilute fluid-particle flows

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 227, 期 4, 页码 2514-2539

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2007.10.026

关键词

quadrature method of moments; number density function; kinetic equation; fluid-particle flows; multiphase systems

向作者/读者索取更多资源

Gas-particle and other dispersed-phase flows can be described by a kinetic equation containing terms for spatial transport, acceleration, and particle processes (such as evaporation or collisions). In principle, the kinetic description is valid from the dilute (non-collisional) to the dense limit. However, its numerical solution in multi-dimensional systems is intractable due to the large number of independent variables. As an alternative, Lagrangian methods discretize the density function into parcels that are simulated using Monte-Carlo methods. While quite accurate, as in any statistical approach, Lagrangian methods require a relatively large number of parcels to control statistical noise, and thus are computationally expensive. A less costly alternative is to solve Eulerian transport equations for selected moments of the kinetic equation. However, it is well known that in the dilute limit Eulerian methods have great difficulty to describe correctly the moments as predicted by a Lagrangian method. Here a two-node quadrature-based Eulerian moment closure is developed and tested for the kinetic equation. It is shown that the method can successfully handle highly non-equilibrium flows (e.g. impinging particle jets, jet crossing, particle rebound off walls, finite Stokes number flows) that heretofore could not be treated accurately with the Eulerian approach. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据