4.1 Article

Calcium control of triphasic hippocampal STDP

期刊

JOURNAL OF COMPUTATIONAL NEUROSCIENCE
卷 33, 期 3, 页码 495-514

出版社

SPRINGER
DOI: 10.1007/s10827-012-0397-5

关键词

Synaptic plasticity; Calcium; Learning; Memory; Hippocampus

向作者/读者索取更多资源

Synaptic plasticity is believed to represent the neural correlate of mammalian learning and memory function. It has been demonstrated that changes in synaptic conductance can be induced by approximately synchronous pairings of pre- and post- synaptic action potentials delivered at low frequencies. It has also been established that NMDAr-dependent calcium influx into dendritic spines represents a critical signal for plasticity induction, and can account for this spike-timing dependent plasticity (STDP) as well as experimental data obtained using other stimulation protocols. However, subsequent empirical studies have delineated a more complex relationship between spike-timing, firing rate, stimulus duration and post-synaptic bursting in dictating changes in the conductance of hippocampal excitatory synapses. Here, we present a detailed biophysical model of single dendritic spines on a CA1 pyramidal neuron, describe the NMDAr-dependent calcium influx generated by different stimulation protocols, and construct a parsimonious model of calcium driven kinase and phosphatase dynamics that dictate the probability of stochastic transitions between binary synaptic weight states in a Markov model. We subsequently demonstrate that this approach can account for a range of empirical observations regarding the dynamics of synaptic plasticity induced by different stimulation protocols, under regimes of pharmacological blockade and metaplasticity. Finally, we highlight the strengths and weaknesses of this parsimonious, unified computational synaptic plasticity model, discuss differences between the properties of cortical and hippocampal plasticity highlighted by the experimental literature, and the manner in which further empirical and theoretical research might elucidate the cellular basis of mammalian learning and memory function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据