4.1 Article

Dissecting cooperative calmodulin binding to CaM kinase II: a detailed stochastic model

期刊

JOURNAL OF COMPUTATIONAL NEUROSCIENCE
卷 27, 期 3, 页码 621-638

出版社

SPRINGER
DOI: 10.1007/s10827-009-0173-3

关键词

Calmodulin; CaMKII; Synaptic plasticity; Gillespie algorithm; Particle swarm theory

资金

  1. NIGMS NIH HHS [GM069611, R01 GM069611] Funding Source: Medline
  2. NINDS NIH HHS [P01 NS038310, T32 NS041226, NS 041226, R01 NS026086, NS26086, R56 NS026086, NS038310] Funding Source: Medline

向作者/读者索取更多资源

Calmodulin (CaM) is a major Ca2+ binding protein involved in two opposing processes of synaptic plasticity of CA1 pyramidal neurons: long-term potentiation (LTP) and depression (LTD). The N- and C-terminal lobes of CaM bind to its target separately but cooperatively and introduce complex dynamics that cannot be well understood by experimental measurement. Using a detailed stochastic model constructed upon experimental data, we have studied the interaction between CaM and Ca2+-CaM-dependent protein kinase II (CaMKII), a key enzyme underlying LTP. The model suggests that the accelerated binding of one lobe of CaM to CaMKII, when the opposing lobe is already bound to CaMKII, is a critical determinant of the cooperative interaction between Ca2+, CaM, and CaMKII. The model indicates that the target-bound Ca2+ free N-lobe has an extended lifetime and may regulate the Ca2+ response of CaMKII during LTP induction. The model also reveals multiple kinetic pathways which have not been previously predicted for CaM-dissociation from CaMKII.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据