4.4 Article

Essential Dynamics for the Study of Microstructures in Liquids

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 36, 期 6, 页码 399-407

出版社

WILEY
DOI: 10.1002/jcc.23814

关键词

molecular dynamics; essential dynamics; conformational sampling; clusters; computational spectroscopy

向作者/读者索取更多资源

Essential Dynamics (ED) is a powerful tool for analyzing molecular dynamics (MD) simulations and it is widely adopted for conformational analysis of large molecular systems such as, for example, proteins and nucleic acids. In this study, we extend the use of ED to the study of clusters of arbitrary size constituted by weakly interacting particles, for example, atomic clusters and supramolecular systems. The key feature of the method we present is the identification of the relevant atomic-molecular clusters to be analyzed by ED for extracting the information of interest. The application of this computational approach allows a straightforward and unbiased conformational study of the local microstructures in liquids, as emerged from semiclassical MD simulations. The good performance of the method is demonstrated by calculating typical observables of liquid water, that is, NMR, NEXAFS O1s, and IR spectra, known to be rather sensitive both to the presence and to the conformational features of hydrogen-bonded clusters. (c) 2014 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据