4.4 Article

A Polarizable Empirical Force Field for Molecular Dynamics Simulation of Liquid Hydrocarbons

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 35, 期 10, 页码 789-801

出版社

WILEY-BLACKWELL
DOI: 10.1002/jcc.23551

关键词

molecular dynamics; polarization; hydrocarbons; COS model; GROMOS; dielectric permittivity

资金

  1. National Center of Competence in Research (NCCR) in Structural Biology
  2. Swiss National Science Foundation [200020-137827]
  3. European Research Council [228076]

向作者/读者索取更多资源

Electronic polarizability is usually treated implicitly in molecular simulations, which may lead to imprecise or even erroneous molecular behavior in spatially electronically inhomogeneous regions of systems such as proteins, membranes, interfaces between compounds, or mixtures of solvents. The majority of available molecular force fields and molecular dynamics simulation software packages does not account explicitly for electronic polarization. Even the simplest charge-on-spring (COS) models have only been developed for few types of molecules. In this work, we report a polarizable COS model for cyclohexane, as this molecule is a widely used solvent, and for linear alkanes, which are also used as solvents, and are the precursors of lipids, amino acid side chains, carbohydrates, or nucleic acid backbones. The model is an extension of a nonpolarizable united-atom model for alkanes that had been calibrated against experimental values of the density, the heat of vaporization and the Gibbs free energy of hydration for each alkane. The latter quantity was used to calibrate the parameters governing the interaction of the polarizable alkanes with water. Subsequently, the model was tested for other structural, thermodynamic, dielectric, and dynamic properties such as trans/gauche ratios, excess free energy, static dielectric permittivity, and self-diffusion. A good agreement with the experimental data for a large set of properties for each considered system was obtained, resulting in a transferable set of polarizable force-field parameters for CH2, CH3, and CH4 moieties. (c) 2014 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据