4.4 Article

Refinement of the Application of the GROMOS 54A7 Force Field to β-Peptides

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 34, 期 32, 页码 2796-2805

出版社

WILEY-BLACKWELL
DOI: 10.1002/jcc.23459

关键词

molecular dynamics; force field; GROMOS; 54A7; 54A7_beta; one-step perturbation

资金

  1. National Center of Competence in Research (NCCR) in Structural Biology
  2. Swiss National Science Foundation [200020-137827]
  3. European Research Council (ERC) [228076]

向作者/读者索取更多资源

In this study, a hexa--peptide whose conformational equilibrium encompasses two different helical folds, a right-handed 2.7(10/12)-helix and a left-handed 3(14)-helix, is simulated using different GROMOS force-field parameter sets. When applying the recently developed GROMOS 54A7 force field, a significant destabilization effect on the 2.7(10/12)-helix of the peptide is observed, and the agreement with the experimental NOE distance bounds is much worse compared with the ones using previous versions of the GROMOS force field. This led us to investigate the free enthalpy difference between the two helices as a function of a variation of different subsets of force-field parameters. Both long time molecular dynamics simulations and one-step perturbation predictions suggest that the disagreement with the experimental NMR data when using the 54A7 force field is caused by the use for -peptides of the new backbone phi-/-torsional-angle energy terms introduced in this force field which were based on conformational fitting of backbone phi/ angles for a large set of proteins. This means that these parameters of backbone phi- and -torsional-angle terms should not be applied to non--peptides such as -peptides. This modified assignment of torsional-angle energy terms and parameters is denoted as 54A7_. It corrects the wrong description of the conformational ensemble of the hexa--peptide obtained using the previous assignment and yields as good agreement with NMR data for other -peptides that adopt a single helical or a hairpin fold. (c) 2013 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据