4.4 Article

Fully ab initio protein-ligand interaction energies with dispersion corrected density functional theory

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 33, 期 21, 页码 1730-1739

出版社

WILEY
DOI: 10.1002/jcc.23004

关键词

protein-ligand interactions; density functional theory; dispersion correction; molecular fractionation with conjugated caps; scoring functions

资金

  1. German Research Foundation [AN 793/1-1]

向作者/读者索取更多资源

Dispersion corrected density functional theory (DFT-D3) is used for fully ab initio protein-ligand (PL) interaction energy calculation via molecular fractionation with conjugated caps (MFCC) and applied to PL complexes from the PDB comprising 3680, 1798, and 1060 atoms. Molecular fragments with n amino acids instead of one in the original MFCC approach are considered, thereby allowing for estimating the three-body and higher many-body terms. n > 1 is recommended both in terms of accuracy and efficiency of MFCC. For neutral protein side-chains, the computed PL interaction energy is visibly independent of the fragment length n. The MFCC fractionation error is determined by comparison to a full-system calculation for the 1060 atoms containing PL complex. For charged amino acid side-chains, the variation of the MFCC result with n is increased. For these systems, using a continuum solvation model with a dielectricity constant typical for protein environments (? = 4) reduces both the variation with n and improves the stability of the DFT calculations considerably. The PL interaction energies for two typical complexes obtained ab initio for the first time are found to be rather large (-30 and -54 kcal/mol). (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据