4.4 Article

Partial Atomic Charges and Their Impact on the Free Energy of Solvation

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 34, 期 3, 页码 187-197

出版社

WILEY
DOI: 10.1002/jcc.23117

关键词

molecular dynamics; free energy; computational drug design; expanded ensemble; atomic charges

资金

  1. Swedish Research Council (VR)
  2. Wenner-Gren Foundation

向作者/读者索取更多资源

Free energies of solvation (Delta G) in water and n-octanol have been computed for common drug molecules by molecular dynamics simulations with an additive fixed-charge force field. The impact of the electrostatic interactions was investigated by computing the partial atomic charges with four methods that all fit the charges from the quantum mechanically determined electrostatic potential (ESP). Due to the redistribution of electron density that occurs when molecules are transferred from gas phase to condensed phase, the polarization impact was also investigated. By computing the partial atomic charges with the solutes placed in a conductor-like continuum, the charges were effectively polarized to take the polarization effects into account. No polarization correction term or similar was considered, only the partial atomic charges. Results show that free energies are very sensitive to the choice of atomic charges and that Delta G can differ by several k(B)T depending on the charge computing method. Inclusion of polarization effects makes the solutes too hydrophilic with most methods and in vacuo charges make the solutes too hydrophobic. The restrained-ESP methods together with effectively polarized charges perform well in our test set and also when applied to a larger set of molecules. The effect of water models is also highlighted and shows that the conclusions drawn are valid for different three-point models. Partitioning between an aqueous and a hydrophobic phase is also described better if the two environment's polarization is taken into account, but again the results are sensitive to the charge calculation method. Overall, the results presented here show that effectively polarized charges can improve the description of solvating a drug-like molecule in a solvent and that the choice of partial atomic charges is crucial to ensure that molecular simulations produce reliable results. (C) 2012 Wiley Periodicals, Inc. DOI: 10.1002/jcc.23117

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据