4.4 Article

Blue shifts of the C-H stretching vibrations in hydrogen-bonded and protonated trimethylamine. Effect of hyperconjugation on bond properties

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 29, 期 9, 页码 1490-1496

出版社

WILEY
DOI: 10.1002/jcc.20910

关键词

DFT calculations; trimethylamine; trimethylamine-phenols complexes; protonated trimethylamine; hyperconjugation; blue shifts

向作者/读者索取更多资源

The optimized geometry of isolated trimethylamine (TMA), its hydrogen bond complexes with phenol derivatives and protonated TMA is calculated at the B3LYP/6-31++G(d,p) level. A natural bond orbital (NBO) analysis on these systems is carried out at the same level of theory. In isolated TMA, one of the C-H bond in each of the three CH3 groups is more elongated than the two other ones. As revealed by the NBO data, this results from a hyperconjugative interaction from the N lone pair to the sigma*(C-H) orbitals of the C-H bonds being in a transoid position with respect to the N lone pair. The formation of an intermolecular OH center dot center dot center dot N hydrogen bond with phenols results in a decrease of the lone pair effect. A linear correlation is found between the decrease in occupation of the sigma*(C-H) orbitals and the decrease in the hyperconjugative interaction energy in the complexes and isolated TMA. Complex formation with phenols results in a blue shift of 55-74 cm(-1) of the C-H stretching vibrations involved in the lone pair effect. Smaller blue shifts between 14 and 23 cm(-1) are predicted for the other C-H bonds. In these complexes, a linear correlation is found between the frequency shifts and the elongation of the C-H bonds. Protonation of TMA results in a nearly equalization of all the C-H distances and a blue shift of 180 cm(-1) of the C-H bonds involved in hyperconjugation with the N lone pair. (C) 2008 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据