4.5 Article

Finding Maximum Colorful Subtrees in Practice

期刊

JOURNAL OF COMPUTATIONAL BIOLOGY
卷 20, 期 4, 页码 311-321

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/cmb.2012.0083

关键词

computational mass spectrometry; small molecules; metabolomics; NP-hard problems; maximum colorful subtree problem; maximum subtree problem

向作者/读者索取更多资源

In metabolomics and other fields dealing with small compounds, mass spectrometry is applied as a sensitive high-throughput technique. Recently, fragmentation trees have been proposed to automatically analyze the fragmentation mass spectra recorded by such instruments. Computationally, this leads to the problem of finding a maximum weight subtree in an edge-weighted and vertex-colored graph, such that every color appears, at most once in the solution. We introduce new heuristics and an exact algorithm for this Maximum Colorful Subtree problem and evaluate them against existing algorithms on real-world and artificial datasets. Our tree completion heuristic consistently scores better than other heuristics, while the integer programming-based algorithm produces optimal trees with modest running times. Our fast and accurate heuristic can help determine molecular formulas based on fragmentation trees. On the other hand, optimal trees from the integer linear program are useful if structure is relevant, for example for tree alignments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据