4.5 Article Proceedings Paper

Free energy estimates of all-atom protein structures using generalized belief propagation

期刊

JOURNAL OF COMPUTATIONAL BIOLOGY
卷 15, 期 7, 页码 755-766

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/cmb.2007.0131

关键词

free energy inference; belief propagation; protein structure

向作者/读者索取更多资源

We present a technique for approximating the free energy of protein structures using generalized belief propagation (GBP). The accuracy and utility of these estimates are then demonstrated in two different application domains. First, we show that the entropy component of our free energy estimates can useful in distinguishing native protein structures from decoys-structures with similar internal energy to that of the native structure, but otherwise incorrect. Our method is able to correctly identify the native fold from among a set of decoys with 87.5% accuracy over a total of 48 different immunoglobulin folds. The remaining 12.5% of native structures are ranked among the top four of all structures. Second, we show that our estimates of Delta Delta G upon mutation upon mutation for three different data sets have linear correlations of 0.63-0.70 with experimental measurements and statistically significant p-values. Together, these results suggest that GBP is an effective means for computing free energy in all-atom models of protein structures. GBP is also efficient, taking a few minutes to run on a typical sized protein, further suggesting that GBP may be an attractive alternative to more costly molecular dynamic simulations for some tasks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据