4.0 Article

Vibration of Single Layer Graphene Sheet Based on Non local Elasticity and Higher Order Shear Deformation Theory

期刊

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jctn.2010.1451

关键词

Vibration; Graphene Sheets; Nonlocal Elasticity; Higher Order Shear Deformation Theory

向作者/读者索取更多资源

Higher order shear deformation theory (HSDT) is reformulated using the nonlocal differential constitutive relations of Eringen. The equations of motion of the nonlocal theories are derived. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Analytical solutions for the vibration of nanoplates such as graphene sheets are presented. Nonlocal elasticity theories are employed to bring out the size effect on the natural frequencies of graphene sheets. Effects of (i) nonlocal parameter, (ii) length (iii) thickness of the graphene sheets and (iv) higher order shear deformation theory on the vibration frequencies are investigated. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories of graphene sheets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据