4.0 Article

First-Principles Study on Physical Properties of a Single ZnO Monolayer with Graphene-Like Structure

期刊

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jctn.2010.1470

关键词

Phonon Dispersion; Elastic and Piezoelectric Constants; Electronic Band Structure; Optical Dielectric Functions; First-Principles

资金

  1. Nature Science Foundation of China [10704009]
  2. Foundation of National Excellent Doctoral Dissertation of China

向作者/读者索取更多资源

The elastic, piezoelectric, electronic, and optical properties of a single ZnO monolayer (SZOML) with graphene-like structure are investigated from the first-principles calculations. The phonon dispersion curves contain three acoustic and three optical branches. At Gamma point, the out-of-plane acoustic mode has an asymptotic behavior omega(q) = Bq(2) with B = 1.385 x 10(-7) m(2)/s, while two in-plane acoustic modes have sound velocities 2.801 km/s and 8.095 km/s; the other three optical modes have frequencies 250 cm(-1), 566 cm(-1), and 631 cm(-1). The elastic and piezoelectric constants are obtained from the relaxed ion model. It is found that the SZOML is much softer than graphene, while it is a piezoelectric material. The electronic band gap is 3.576 eV, which implies that the SZOML is a wide band gap semiconductor. Many peaks exist in the linear optical spectra, where the first peak at 3.58 eV corresponds to the band gap of SZOML.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据