4.4 Article

The reaction products of sulfide and S-nitrosoglutathione are potent vasorelaxants

期刊

NITRIC OXIDE-BIOLOGY AND CHEMISTRY
卷 46, 期 -, 页码 123-130

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.niox.2014.12.008

关键词

Hydrogen sulfide; Nitric oxide; Nitrosopersulfide; Polysulfides; Aorta relaxation; Uterus

资金

  1. Slovak Research and Development Agency [APVV-0074-11]
  2. Hungarian National Science Foundation (OTKA) [K 109843]
  3. VEGA [2/0050/13, 1/0289/12, 2/0074/14]
  4. BMBS COST Action [BM1005]
  5. Marie Curie International Reintegration Grant [PIRG08-GA-2010-277006]

向作者/读者索取更多资源

The chemical interaction of sodium sulfide (Na2S) with the NO-donor S-nitrosoglutathione (GSNO) has been described to generate new reaction products, including polysulfides and nitrosopersulfide (SSNO-) via intermediacy of thionitrous acid (HSNO). The aim of the present work was to investigate the vascular effects of the longer-lived products of the Sulfide/GSNO interaction. Here we show that the products of this reaction relax precontracted isolated rings of rat thoracic aorta and mesenteric artery (but to a lesser degree rat uterus) with a >2-fold potency compared with the starting material, GSNO (50 nM), whereas Na2S and polysulfides have little effect at 1-5 mu M. The onset of vasorelaxation of the reaction products was 7-10 times faster in aorta and mesenteric arteries compared with GSNO. Relaxation to GSNO (100-500 nM) was blocked by an inhibitor of soluble guanylyl cyclase, ODQ (0.1 and 10 mu M), and by the NO scavenger cPTIO (100 mu M), but less affected by prior acidification (pH 2-4), and unaffected by N-acetylcysteine (1 mM) or methemoglobin (20 mu M heme). By contrast, relaxation to the Sulfide/GSNO reaction products (100-500 nM based on the starting material) was inhibited to a lesser extent by ODQ only slightly decreased by cPTIO, more markedly inhibited by methemoglobin and N-acetylcysteine, and abolished by acidification before addition to the organ bath. The reaction mixture was found to generate NO as detected by EPR spectroscopy using N-(dithiocarboxy)-N-methyl-D-glucamine (MGD(2))-Fe2+ as spin trap. In conclusion, the Sufide/GSNO reaction products are faster and more pronounced vasorelaxants than GSNO itself. We conclude that in addition to NO formation from SSNO-, reaction products other than polysulfides may give rise to nitroxyl (HNO) and be involved in the pronounced relaxation induced by the Sulfide/GSNO cross-talk. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据