4.6 Article

Behavior and Modeling of Concrete Confined with FRP Composites of Large Deformability

期刊

JOURNAL OF COMPOSITES FOR CONSTRUCTION
卷 15, 期 6, 页码 963-973

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)CC.1943-5614.0000230

关键词

Confinement; Concrete; FRP; Large rupture strain; Compressive stress-strain behavior; Stress-strain model

资金

  1. Hong Kong Polytechnic University [1-BB7X, A-PC1L]

向作者/读者索取更多资源

This paper presents the results of an experimental study on the behavior of concrete confined by fiber reinforced polymer (FRP) jackets with a large rupture strain (LRS). The FRP composites considered herein are formed by embedding polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) fibers in a suitable epoxy resin matrix. The PEN and PET fibers are usually made from recycled materials (e. g., PET bottles) and have a strain capacity greater than 5%. They are ideal for use in seismic retrofit applications where increases in ductility and energy absorption capacity are of prime concern. The present study has two specific objectives: (1) to develop a good understanding of the compressive stress-strain behavior of concrete confined with LRS FRP; and (2) to examine whether existing confinement models developed for conventional FRPs are applicable to LRS FRPs. As the existing models have been developed and verified mainly based on test data for CFRP and GFRP, which have a jacket hoop rupture strain of less than 2%, their accuracy in the hoop/lateral strain range beyond 2% is unclear. Results presented in this paper indicate that the two LRS FRPs made from PEN and PET fibers possess a bilinear tensile stress-strain relationship, which has a significant effect on the axial compressive stress-strain behavior of FRP-confined concrete. A recent confinement model for conventional FRPs is compared with the present test results, indicating that the model significantly overestimates the ultimate axial strain. A modified version of the model is then presented to provide more accurate predictions of the test results. DOI: 10.1061/(ASCE)CC.1943-5614.0000230. (C) 2011 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据