4.4 Article

Mechanical performance and modelling of a fully recycled modified CF/PP composite

期刊

JOURNAL OF COMPOSITE MATERIALS
卷 46, 期 12, 页码 1503-1517

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998311423860

关键词

Recycling; polymer-matrix composites (PMCs); mechanical properties; polypropylene; carbon fiber

向作者/读者索取更多资源

A fully recycled carbon fiber reinforced maleic anhydride grafted polypropylene (MAPP)-modified polypropylene (rCF/rPP) composite material has been developed and characterized. This new composite was manufactured employing papermaking principles, dispersing the recycled carbon fibers (rCF) in water, and forming them into mats. Two layers of the recycled polypropylene (rPP) films manufactured using press-forming were sandwiched between three rCF preform layers in a stack. The stack was heated and press-formed resulting in a composite plate with a nominal thickness of 1.20 mm and a fiber volume fraction of 40%. A series of tensile tests using rectangular specimens cut in four different directions (0 degrees, 90 degrees, +/- 45 degrees) in the composite plate were performed to confirm in-plane material isotropy. Models to predict stiffness and strength of the short fiber rCF/rPP composite were also employed and validated using experiments. The models were found to be in good agreement with experimental results. Fiber length distribution measurements were performed before (unprocessed) and after (processed) composite manufacturing to investigate the influence of processing on fiber degradation. The results revealed a significant reduction in fiber length by the press-forming operation. To model the viscoelastic and viscoplastic responses of the composite an inelastic material model was employed and characterized using a series of creep and recovery tests. From the creep tests, it was found that the time and stress dependence of viscoplastic strains follows a power law. The viscoelastic response of the composite was found to be linear in the investigated stress range. The material model was validated in constant stress rate tensile tests and the agreement was good, even close to the rupture stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据