4.3 Article

The physiological response of larval Chironomus riparius (Meigen) to abrupt brackish water exposure

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00360-010-0526-2

关键词

Chironomid; Ion transport; Sodium potassium pump; Proton pump; Hemolymph ions; Salinity

资金

  1. Natural Sciences and Engineering Research Council (NSERC)
  2. Ontario Ministry of Research and Innovation
  3. Canadian Foundation for Innovation

向作者/读者索取更多资源

The physiological response of larval Chironomus riparius was examined following direct transfer from freshwater (FW) to brackish water (BW; 20% seawater). Endpoints of hydromineral status (hemolymph Na+, Cl-, and K+ levels, hemolymph pH, body water content, and whole body Na+/K+-ATPase and V-type H+-ATPase activity) were examined 1, 3, 5, 12 and 24 h following BW transfer. Larvae transferred from FW to FW served as a control. Hemolymph Na+ and Cl- levels increased following BW transfer. Hemolymph pH was initially regulated, but significantly decreased after 24 h in BW. Changes in hemolymph ions were not caused by osmotic loss of water from the hemolymph, since larvae tightly regulated total body moisture content. Furthermore, salinity did not affect hemolymph K+. When larvae were transferred to BW, Na+/K+-ATPase (NKA) activity did not significantly alter relative to FW control animals. In contrast, V-type H+-ATPase (VA) activity in C. riparius significantly decreased in BW. In FW-reared C. riparius, whole body NKA and VA activities were equivalent. However, in the isolated gut with intact Malpighian tubules of FW-reared C. riparius, VA activity was significantly greater than whole body while NKA activity was equivalent. This suggested that gut and/or Malpighian tubule VA activity contributes significantly to whole body VA activity and that a decline in whole body VA activity in BW may be closely linked to alterations in the physiology of gut and Malpighian tubule tissue. Taken together, data indicate that VA is important for ion uptake in FW and that the NKA does not play a major role in regulating ion homeostasis when larvae are acutely exposed to BW.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据