4.5 Article

Functional and neurochemical development in the normal and degenerating mouse retina

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 521, 期 6, 页码 1251-1267

出版社

WILEY-BLACKWELL
DOI: 10.1002/cne.23284

关键词

retinitis pigmentosa; electroretinogram; amino acid neurotransmitter; immunocytochemistry

资金

  1. National Health and Medical Research Council [1009342, 1021042]
  2. Retina Australia

向作者/读者索取更多资源

The rd1 mouse is a well-established animal model for human retinitis pigmentosa (RP). We used electroretinography (ERG) to evaluate retinal function and postembedding immunocytochemistry to determine the changes in cellular amino acid expression in the normal (C57Bl6) and degenerating mouse retina (rd1), as a function of age during development and the onset of degeneration. In the normal mouse retina, photoreceptoral and post-photoreceptoral ERG responses improved simultaneously from eye-opening until adult levels were achieved at approximately postnatal day (P) 30. Maturation of amino acid neurochemistry preceded the development of retinal function in the normal retina. Amino acid levels increased immediately from birth and reached stable levels by eye-opening. In contrast, in the rd1 mouse, both rod and cone pathway function rapidly reduced from eye-opening and by P21 became undetectable. Interestingly, at P18 cone responses were still comparable between the normal and degenerating retina. Before eye opening, the pattern of amino acid immunoreactivity in the rd1 retina was similar to the normal retina. Alterations in neurochemistry were observed after the onset of rod photoreceptor cell death. The most obvious change was the reduction in neurotransmitter immunoreactivity within the synaptic layers and some cell classes of the rd1 retina. Reduction of glutamine and glutamate was observed in Muller cells before established gliosis markers. Overall, these results suggest the rapid maturation of neurochemistry by eye opening followed by functional maturation by P30 in the normal retina. The dystrophic retina displays similar neurochemistry to control retina before eye opening but a subsequent decline. J. Comp. Neurol. 521:12511267, 2013. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据