4.5 Article

Corticosterone and Dehydroepiandrosterone Have Opposing Effects on Adult Neuroplasticity in the Avian Song Control System

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 518, 期 18, 页码 3662-3678

出版社

WILEY
DOI: 10.1002/cne.22395

关键词

adult neurogenesis; BrdU; cortisol; DHEA; hippocampus; NeuN; neurosteroid; songbird; stress

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canadian Institutes of Health Research (CHIR)
  3. Michael Smith Foundation for Health Research (MSFHR)

向作者/读者索取更多资源

Chronic Chronic elevations in glucocorticoids can decrease the production and survival of new cells in the adult brain. In rat hippocampus, supraphysiological doses of dehydroepiandrosterone (DHEA; a sex steroid precursor synthesized in the gonads, adrenals, and brain) have antiglucocorticoid properties. With male song sparrows (Melospiza melodia), we examined the effects of physiological doses of corticosterone, the primary circulating glucocorticoid in birds, and DHEA on adult neuroplasticity. We treated four groups of nonbreeding sparrows for 28 days with empty (control), corticosterone, DHEA, or corticosterone + DHEA implants. Subjects were injected with BrdU on days 3 and 4. In HVC, a critical song control nucleus, corticosterone and DHEA had independent, additive effects. Corticosterone decreased, whereas DHEA increased, HVC volume, NeuN(+) cell number, and BrdU cell number. Coadministration of DHEA completely reversed the neurodegenerative effects of chronic corticosterone treatment. In an efferent target of HVC, the robust nucleus of the arcopallium (RA), DHEA increased RA volume, but this effect was blocked by coadministration of corticosterone. There were similar antagonistic interactions between corticosterone and DHEA on BrdU(+) cell number in the hippocampus and ventricular zone. This is the first report on the effects of corticosterone treatment on the adult song control circuit, and HVC was the most corticosterone-sensitive song nucleus examined. In HVC, DHEA is neuroprotective and counteracts several pronounced effects of corticosterone. Within brain regions that are particularly vulnerable to corticosterone, such as the songbird HVC and rat hippocampus, DHEA appears to be a potent native antiglucocorticoid. J. Comp. Neurol. 518:3662-3678, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据