4.5 Article

Tracer Coupling Patterns of the Ganglion Cell Subtypes in the Mouse Retina

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 512, 期 5, 页码 664-687

出版社

WILEY
DOI: 10.1002/cne.21912

关键词

tracer-coupling; gap junction; ganglion cell; amacrine cell; mouse

资金

  1. National Institutes of Health (NIH) [EY017832, EY07360]

向作者/读者索取更多资源

It is now clear that electrical coupling via gap junctions is prevalent across the retina, expressed by each of the five main neuronal types. With the introduction of mutants in which selective gap junction connexins are deleted, the mouse has recently become an important model for studying the function of coupling between retinal neurons. In this study we examined the tracer-coupling pattern of ganglion cells by injecting them with the gap junction-permanent tracer Neurobiotin to provide, for the first time, a comprehensive survey of ganglion cell coupling in the wildtype mouse retina. Murine ganglion cells were differentiated into 22 morphologically distinct subtypes based on soma-dendritic parameters. Most (16/22) ganglion cell subtypes were tracer-coupled to neighboring ganglion and/or amacrine cells. The amacrine cells coupled to ganglion cells displayed either polyaxonal or wide-field morphologies with extensive arbors. We found that different subtypes of ganglion cells were never coupled to one another, indicating that they subserved independent electrical networks. Finally, we found that the tracer-coupling patterns of the 22 ganglion cell populations were largely stereotypic across the 71 retinas studied. Our results indicate that electrical coupling is extensive in the inner retina of the mouse, suggesting that gap junctions play essential roles in visual information processing. J. Comp. Neurol. 512:664-687, 2009. (C) 2008 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据