4.5 Article

Differential mRNA Expression Patterns of the Synaptotagmin Gene Family in the Rodent Brain

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 512, 期 4, 页码 514-528

出版社

WILEY
DOI: 10.1002/cne.21908

关键词

in situ hybridization; astrocytes; synapse; synaptic vesicle; calcium sensor; single cell multiplex PCR

向作者/读者索取更多资源

Synaptotagmins are a large family of membrane-trafficking proteins. They are evolutionarily conserved and have 15 members in rodents and humans. Synaptotagmins-1, -2, and -9, are known to have an essential role as calcium sensors for fast synaptic release. Synaptotagmin-7 is a major calcium sensor for the exocytosis of large secretory vesicles in endocrine cells. The functional roles of most synaptotagmin isoforms remain unknown. Here we examined whether synaptotagmins are expressed in the rodent brain in distinct patterns and whether individual neurons and astrocytes coexpress multiple synaptotagmin isoforms. We performed a systematic analysis of expression using radioactive in situ hybridization and quantitative real-time reverse-transcriptase polymerase chain reaction (RT-PCR) as well as multiplex RT-PCR on a single-cell level. Our results demonstrate that most synaptotagmins are expressed in the rodent brain in highly distinctive expression patterns, and that individual neurons express variable subsets of different synaptotagmins. We also show that Syt-11 is the major isoform expressed in astrocytes. This study therefore supports the hypothesis that the functional properties of individual neurons and astrocytes are conferred by the specific subset of synaptotagmins expressed in a cell. J. Comp. Neurol. 512:514-528, 2009. (c) 2008 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据