4.5 Article

SynCAM1 Expression Correlates With Restoration of Central Synapses on Spinal Motoneurons After Two Different Models of Peripheral Nerve Injury

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 517, 期 5, 页码 670-682

出版社

WILEY-LISS
DOI: 10.1002/cne.22186

关键词

SynCAM1; neuroligins; spinal motoneurons; peripheral nerve injury

资金

  1. Swedish Research Council
  2. Marcus and Amelia Wallenbergs minnesfond
  3. Marianne and Marcus Wallenbergs stiftelse
  4. Swedish Brain Foundation
  5. Karolinska Institutet

向作者/读者索取更多资源

SynCAM1 and neuroligins (NLGs) are adhesion molecules that govern synapse formation in vitro. In vivo, the molecules are expressed during synaptogenesis, and altered NLG function is linked to synapse dysfunction in autism. Less is known about SynCAM1 and NLGs in adult synapse remodeling. CNS synapse elimination occurs after peripheral nerve injury, which causes a transient decrease in synapse number on spinal motoneurons. Here we have studied the expression of SynCAM1 and NLGs in relation to changes in synaptic covering on spinal motoneurons. We performed sciatic nerve transection (SNT) or crush (SNC), axotomy models that result in poor or good conditions for axon regeneration, respectively. The two lesions resulted in similar synapse elimination and in poor (SNT) and good (SNC) return of synapses after 70 days. Functional recovery was good after SNC but absent after SNT. SynCAM1 mRNA decreased after 14 days in both models and was restored 70 days after SNC, but not after SNT. NLG2 and -3 mRNAs decreased to a smaller degree after SNC than after SNT. Synaptophysin immunoreactivity correlated with SynCAM1 mRNA 70 days after SNT and NLG2 mRNA 70 days after SNC. Surprisingly, an inverse correlation was seen between NLG3 mRNA and Vglut2, a marker for excitatory synapses, 70 days after SNT. We conclude that 1) SynCAM1 mRNA levels seem to reflect the loss and restoration of synapses on motoneurons, 2) down-regulation of NLGs is not a prerequisite for synapse elimination, and 3) expression of SynCAM1 and NLGs is regulated by different mechanisms during regeneration. J. Comp. Neurol. 517:670-682, 2009. (C) 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据