4.7 Article

Shark skin inspired low-drag microstructured surfaces in closed channel flow

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 393, 期 -, 页码 384-396

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2012.10.061

关键词

Riblets; Shark skin; Biomimetics; Low-drag; Antifouling; Closed channel

资金

  1. National Science Foundation, Arlington, VA [CMMI-1000108]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [1000108] Funding Source: National Science Foundation

向作者/读者索取更多资源

Living nature is the inspiration for many innovations and continues to serve as an invaluable resource to solve technical challenges. Skin from fast swimming sharks intrigue researchers since its low-drag riblet structure is applicable to many engineering applications. In this study, riblet-lined closed channel (rectangular duct) internal flow was examined since its effect is less understood than with open channel external flow. With one experimental setup and two fluids, this study examines various dimensional aspects of microstructured riblets. Experimental parameters include riblet geometry, fluid velocity (laminar and turbulent flow), fluid viscosity, riblet combinations, channel size, wettability, and scalability. For direct comparison, the sample flow channel was fabricated to accommodate multiple samples with water and air in various flow conditions, where drag is characterized by measuring pressure drop. Results are discussed and conceptual models are shown suggesting the interaction between vortices and the riblet surfaces. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据