4.7 Article

Cleansing dynamics of oily soil using nanofluids

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 396, 期 -, 页码 293-306

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2013.01.036

关键词

Nanoparticle; Self-assembly; Structural disjoining pressure; Contact angle; Cleansing

资金

  1. Proctor and Gamble Company

向作者/读者索取更多资源

We explored the technological concept of the nanoparticle structuring in the wedge film with regards to its application to the oily soil removal phenomena. The experimental and theoretical investigations on the cleansing of canola oil from a glass substrate using commercially available nanofluids were pursued. Five commercially-available nanofluids with pHs varying from 9.3 to 9.9 were used in the experiments. Experimental results clearly indicated that the time to separate the oily soil from the glass surfaces by nanofluids was much shorter than that for the reference alkaline solution at the same pH. The positive contributions of the nanoparticles to the soil cleaning performance were rationalized in terms of the decrease in the contact angle and the interfacial tension, positive second virial coefficient, and high osmotic pressure of the nanofluid. The effective nanoparticle diameter and the effective volume (i.e., concentration) of the nanoparticles were determined using our novel capillary force balance technique in conjunction with the microinterferometric method. Using the experimentally measured values of the effective particle diameter, effective volume, and the osmotic pressure, the structural disjoining pressure in the wedge film was calculated from a theoretical model based on the statistical mechanics theory. The experimental data for the oil cleaning performance correlated well with the calculated values of the disjoining pressure, the spreading coefficient, and the film tension. We used the drop profile analysis based on the Laplace equation augmented with the extra term of the disjoining pressure to theoretically analyze the nanofluid spreading and wetting phenomena, and the detachment of the oil drop from the solid surface. These results confirm the novel mechanism of detergency using nanofluids based on the normal force (i.e., structural disjoining pressure) arising from the ordered nanoparticle structure formation in the confined space between the soil and the solid substrate (i.e., the wedge film). (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据