4.7 Article

Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 366, 期 1, 页码 224-232

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2011.09.072

关键词

Carboxymethyl chitosan; Hydroxyapatite; Scaffold; Osteoblast; Stem cell

资金

  1. Singapore Stem Cell Consortium [SSCC/09/019]

向作者/读者索取更多资源

The behavior of MC3T3 osteoblasts and human bone marrow stem cells on non-coated and hydroxyapatite (HAP)-coated carboxymethyl chitosan (CMCS) scaffolds was investigated in this study. Four HAP-coated scaffolds with different coating morphology and coverage were prepared by mineralization for 1 week in four different mineralizing solutions. Viability, attachment, proliferation, and differentiation of the osteoblasts on these scaffolds were evaluated, and an osteogenic gene expression analysis was carried out to investigate the osteoblastic differentiation of the stem cells. No cytotoxic effects were observed with both the non-coated and coated scaffolds. The non-coated CMCS scaffold supports attachment, proliferation, and differentiation of the osteoblasts and directs stem cell differentiation to osteoblast. Coating the scaffold with HAP substantially enhances these effects on the osteoblasts and stem cells. The main improvement was in the late stage of osteoblast differentiation since osteoblastic differentiation of the osteoblasts and stem cells in this stage was significantly enhanced by the coatings regardless of the variation in morphology and coverage. On the other hand, high HAP coverage was beneficial in stimulating osteoblast attachment and proliferation. This study demonstrates the good potential of HAP-coated CMCS scaffolds as osteogenic scaffolds to stimulate bone healing. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据