4.7 Article

Time-dependent ion selectivity in capacitive charging of porous electrodes

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 384, 期 -, 页码 38-44

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2012.06.022

关键词

Water desalination; Porous electrode theory; Capacitive deionization; Electrostatic double layer theory

资金

  1. Dutch Ministry of Economic Affairs
  2. European Union Regional Development Fund
  3. Province of Friesland
  4. City of Leeuwarden
  5. EZ/Kompas Program of the Samenwerkingsverband Noord-Nederland

向作者/读者索取更多资源

In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacitive deionization of water containing NaCl/CaCl2 mixtures, when the concentration of Na+ ions in the water is five times the Ca2+-ion concentration. In this experiment, after applying a voltage difference between two porous carbon electrodes, first the majority monovalent Na+ cations are preferentially adsorbed in the EDLs, and later, they are gradually replaced by the minority, divalent Ca2+ cations. In a process where this ion adsorption step is followed by washing the electrode with freshwater under open-circuit conditions, and subsequent release of the ions while the cell is short-circuited, a product stream is obtained which is significantly enriched in divalent ions. Repeating this process three times by taking the product concentrations of one run as the feed concentrations for the next, a final increase in the Ca2+/Na+-ratio of a factor of 300 is achieved. The phenomenon of time-dependent ion selectivity of EDLs cannot be explained by linear response theory. Therefore, a nonlinear time-dependent analysis of capacitive charging is performed for both porous and flat electrodes. Both models attribute time-dependent ion selectivity to the interplay between the transport resistance for the ions in the aqueous solution outside the EDL, and the voltage-dependent ion adsorption capacity of the EDLs. Exact analytical expressions are presented for the excess ion adsorption in planar EDLs (Gouy-Chapman theory) for mixtures containing both monovalent and divalent cations. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据