4.7 Article

Molecular selective photocatalysis by TiO2/nanoporous silica core/shell particulates

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 358, 期 1, 页码 245-251

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2011.02.018

关键词

Photocatalysis; Molecular recognition; Mesoporous silica; Titania; Nonylphenol

资金

  1. Japan Society for the Promotion of Science [19350103]
  2. MEXT
  3. Special Research Project
  4. Grants-in-Aid for Scientific Research [19350103] Funding Source: KAKEN

向作者/读者索取更多资源

The coating of TiO2 particles (P25) by a nanoporous silica layer was conducted to impart molecular recognitive photocatalytic ability. TiO2/nanoporous silica core/shell particles with varied pore diameters of the shell were synthesized by the reaction of P25 with an aqueous mixture of tetraethoxysilane and alkyl-trimethylammonium chloride with varied alkyl chain lengths, followed by calcination. The TEM and nitrogen adsorption/desorption isotherms of the products showed that a nanoporous silica shell with a thickness of ca. 2 nm and controlled pore diameter (1.2, 1.6, and 2.7 nm) was deposited on the titania particle when surfactants with different alkyl chain lengths (C12, C16 and C22) were used. The water vapor adsorption/desorption isotherms of the core/shell particles revealed that a larger amount of water adsorbed on the core/shell particles when the pore diameter is larger. The Si-29 MAS NMR spectra of the core/shell particles showed that the amount of surface silanol groups was independent of the water vapor adsorption capacity of the products. The possible molecular recognitive photocatalysis on the products was investigated under UV irradiation using two kinds of aqueous mixtures containing different organic compounds with varied sizes and functional groups: a 4-butylphenol, 4-hexylphenol, and 4-nonylphenol mixture and a 2-nitrophenol, 2-nitro-4-phenylphenol, and 4-nitro-2,6-diphenylphenol mixture. It was found that the core/shell particles exhibited selective adsorption-driven molecular recognitive photocatalytic decomposition of 4-nonylphenol and 2-nitrophenol in the two mixtures. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据