4.7 Article

Nanoscale repulsive forces between mica and silica surfaces in aqueous solutions

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 361, 期 1, 页码 397-399

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2011.05.063

关键词

Nanoscale forces; Repulsive forces; Mica; Silica; AFM; Water structure

资金

  1. CONICYT-Chile [1090781]

向作者/读者索取更多资源

Nanoscale repulsive forces between mineral surfaces in aqueous solutions were measured for the asymmetric mica-silica system. The force measured with an atomic force microscope (AFM) has universal character in the short range, less than similar to 1 nm or about 3-4 water molecules, independent of solution conditions, that is, electrolyte ion (Na, Ca, Al), concentration (10(-6)-10(-2) M), and pH (3.9-8.2). Notably, the force is essentially the same as for the glass-silica system. Single force curves for a mica-silica system in a 10(-4) M aqueous NaCl solution at pH similar to 5.1 show oscillations with a period of about 0.25 nm, roughly the diameter of a water molecule, a consequence of a layer-by-layer dehydration of the surfaces when pushed together. This result provides additional support to the idea that nanoscale repulsive forces between mineral surfaces in aqueous solutions arise from a surface-induced water effect; the water between two mineral plates that are pushed together becomes structured and increasingly anchored to the surface of the plates by the creation of a hydrogen-bonding network that prevents dehydration of the surfaces. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据