4.7 Article

Surface adsorption alters the susceptibility of whey proteins to pepsin-digestion

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 344, 期 2, 页码 372-381

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2010.01.006

关键词

alpha-Lactalbumin; beta-Lactoglobulin; Whey proteins; Pepsinolysis; SDS-PAGE; MALDI-TOF

向作者/读者索取更多资源

An in vitro digestion model mimicking the gastric phase of the human gastrointestinal tract coupled with SDS-PAGE and MALDI-TOF mass spectroscopy was employed to study the hydrolysis profiles of whey proteins in solution and adsorbed at the oil-water interface. The objective of this work was to understand the differences in hydrolysis behaviour of whey protein isolates once adsorbed at the interface, and comparisons were carried out with pure beta-lactoglobulin and alpha-lactalbumin fractions. In solution, while beta-lactoglobulin appeared to be resistant to enzymatic treatment, alpha-lactalbumin was fully degraded. Adsorption of both proteins at the oil-water interface affected their conformational structure and susceptibility to peptic hydrolysis. Adsorbed beta-lactoglobulin was hydrolyzed into small polypeptides and in contrast, the resistance of alpha-lactalbumin to pepsin increased upon adsorption at the interface. In addition, changes in the particle size distribution of the droplets during pepsin hydrolysis mainly depended on the original protein concentration. The results suggested that exchanges occur at the interface between adsorbed and non-adsorbed protein, that is to say that either some protein desorb from the interface and does not fully recover its structure in solution, or that hydrolysis of the protein at the interface induces further adsorption and hydrolysis of the protein in solution. These mechanisms have important implications in the digestibility of the proteins. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据