4.7 Article

Interaction between tetracycline and smectite in aqueous solution

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 341, 期 2, 页码 311-319

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2009.09.054

关键词

Adsorption; Cation exchange; Desorption; Intercalation; Protonation; Smectite

资金

  1. National Cheng Kung University (NCKU), Taiwan

向作者/读者索取更多资源

The fate and transport of commonly used antibiotics in soil and groundwater have attracted renewed Studies due to increased sensitivities of analytical instruments and thus frequent detections of these compounds even in treated wastewater. Smectite, an important soil component, has large surface area and high cation exchange capacity, while tetracycline (TC) can exist in different forms and charges under different pH conditions. Thus, the interaction between smectite and TC in aqueous systems is of great importance. This research focused on elucidating the mechanisms of TC uptake by smectite, in terms of TC adsorption, cation desorption, and pH changes associated with TC adsorption by smectite and intercalation in smectite. TC adsorption onto smectite was a relatively fast process even though most of the adsorption sites were in the interlayer position involved in intercalation as confirmed by the expansion of d(001) spacing. The TC adsorption capacity was equivalent to 0.74-1.11 times the cation exchange capacity for three of the four smectite minerals studied. Accompanying TC adsorption was simultaneous adsorption of H+, resulting in protonation of TC on the dimethylamine group. At higher TC input concentrations further adsorption of H+ resulted in the ratio of H+ adsorbed to TC adsorbed greater than one, suggesting that additionally adsorbed H+ could serve as counterions to partially offset the negative charges on the tricarbonyl or phenolic diketone functional groups. The positive correlations between cations desorbed and TC adsorbed, as well as TC adsorbed and H+ adsorbed, provided a first time evidence to confirm cation exchange as the main mechanism of TC uptake, even under neutral pH conditions. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据