4.7 Article

Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: A fluorescence quenching study

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 345, 期 2, 页码 442-447

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2010.02.011

关键词

Activated sludge; Binding; Extracellular polymeric substances; Dicamba; Fluorescence quenching

资金

  1. Chinese Academy of Sciences [KZCX2-YW-335]
  2. National Natural Science Foundation of China [40673070, 40872169]

向作者/读者索取更多资源

Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em = 225 nm/342-344 nm and peak B with Ex/Em = 275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em = 270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (log K-a) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. Log K-a for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS. (C) 2010 Elsevier Inc. All rights reserved..

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据