4.7 Article

Surface-grafting of phosphates onto a polymer for potential biomimetic functionalization of biomaterials

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 330, 期 1, 页码 77-83

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2008.10.015

关键词

Surface grafting; Phosphate; Poly(ethylene-co-acrylic acid); Polymer; Biomaterials

资金

  1. National Institutes of Health [DE015384, GM075840, DE017689]
  2. Korea Research Foundation Grant from the Korean Government [KRF-2006-214-000207]

向作者/读者索取更多资源

In the human body, phosphate groups play important roles in signaling and the biological functions of proteins and peptides. Despite the importance of phosphate groups, polymer surfaces have not been directly grafted with phosphate groups by chemical reactions because the usual organic solvents used to graft phosphate groups can dissolve or swell polymers. We focused this study on grafting phosphate groups onto a poly(ethylene-co-acrylic acid) (PEAA) surface in all aqueous solution. O-phospho L-serine and O-phosphoethanolamine were grafted on PEAR surfaces to introduce phosphate groups by activating carboxylic acid groups of PEAA using N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in all aqueous environment. X-ray photoelectron spectroscopy (XPS) was used to elucidate the process by which surface grafting occurs and the process that the phosphate group is cleaved into a phosphate ion and a hydrolyzed molecule at high pH. It was found that under appropriate reaction conditions the phosphate groups could be successfully grafted on the polymer surfaces. The phosphate-grafted polymer surfaces showed lower water contact angles than the initial polymer surfaces likely due to their highly mobile and hydrophilic phosphate side groups. This work demonstrates a technique to successfully graft phosphate groups onto organic polymer surfaces in a biocompatible aqueous environment, which may open new avenues to functionalizing synthetic polymeric and natural macromolecule derived biomaterials. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据