4.7 Article

AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 317, 期 1, 页码 275-287

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2007.09.046

关键词

ionic liquids; lubricants; adhesion; friction; wear; atomic force microscopy; Kelvin probe microscopy; surface potential; resistance

向作者/读者索取更多资源

Ionic liquids (ILs) are considered as lubricants for micro/nanoelectromechanical systems (MEMS/NEMS) due to their excellent thermal and electrical conductivity. So far, only macroscale friction and wear tests have been conducted on these materials. Evaluating the nanoscale tribological performance of ILs when applied as a few nanometers-thick film on a substrate is a crucial step to understand how these novel materials can efficiently lubricate MEMS/NEMS devices. To this end, the adhesion, friction and wear properties of two ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and 1-butyl-3-methylimidazolium octyl sulfate (BMIM-OctSO(4)), applied on Si(100), are investigated for the first time using atomic force microscopy (AFM). Data is compared to the perfluoropolyether lubricant Z-TETRAOL, which has high thermal stability and extremely low vapor pressure. Wear at ultralow loads was simulated and the lubricant removal mechanism was investigated using AFM-based surface potential and contact resistance techniques. Thermally treated coatings containing a mobile lubricant fraction (i.e., partially bonded) were better able to protect the Si substrate from wear compared to the fully bonded coatings, and this enhanced protection is attributed to lubricant replenishment. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据