4.4 Article

Plasticity in the adult human auditory Brainstem following short-term linguistic training

期刊

JOURNAL OF COGNITIVE NEUROSCIENCE
卷 20, 期 10, 页码 1892-1902

出版社

M I T PRESS
DOI: 10.1162/jocn.2008.20131

关键词

-

资金

  1. Northwestern University
  2. National Institutes of Health [R03HD051827, R21DC007468, R01DC001510]
  3. National Science Foundation [BCS-0544846]

向作者/读者索取更多资源

Peripheral and central structures along the auditory pathway contribute to speech processing and learning. However, because speech requires the use of functionally and acoustically complex sounds which necessitates high sensory and cognitive demands, long-term exposure and experience using these sounds is often attributed to the neocortex with little emphasis placed on subcortical structures. The present study examines changes in the auditory brainstem, specifically the frequency following response (FFR), as native English-speaking adults learn to incorporate foreign speech sounds (lexical pitch patterns) in word identification. The FFR presumably originates from the auditory midbrain and can be elicited pre-attentively. We measured FFRs to the trained pitch patterns before and after training. Measures of pitch tracking were then derived from the FFR signals. We found increased accuracy in pitch tracking after training, including a decrease in the number of pitch-tracking errors and a refinement in the energy devoted to encoding pitch. Most interestingly, this change in pitch-tracking accuracy only occurred in the most acoustically complex pitch contour (dipping contour), which is also the least familiar to our English-speaking subjects. These results not only demonstrate the contribution of the brainstem in language learning and its plasticity in adulthood but also demonstrate the specificity of this contribution (i. e., changes in encoding only occur in specific, least familiar stimuli, not all stimuli). Our findings complement existing data showing cortical changes after second-language learning, and are consistent with models suggesting that brainstem changes resulting from perceptual learning are most apparent when acuity in encoding is most needed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据