4.6 Article

Phonon propagation dynamics in band-engineered one dimensional phononic crystal waveguides

期刊

NEW JOURNAL OF PHYSICS
卷 17, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/17/11/113032

关键词

phononic crystal; mechanical resonator; four wave mixing

资金

  1. JSPS KAKENHI Grant [23241046]
  2. Grants-in-Aid for Scientific Research [23241046] Funding Source: KAKEN

向作者/读者索取更多资源

The phonon propagation dynamics in a phononic crystal waveguide, realized via a suspended one-dimensional membrane array with periodic air holes, is investigated as function of its geometry. The bandstructure of the phononic crystal waveguide can be engineered by modifying the characteristics of the phonon waves by varying the waveguide width and the pitch of the air holes. This enables the phonon transmission bands, the bandgaps, the velocity and the nonlinear dispersion in the phononic crystal to be controlled. Indeed the engineered bandstructure can even be tuned to sustain multiple phonon modes in a given branch which while being spectrally degenerate can be temporally resolved via their differing group velocities. Furthermore, the ability to tune the bandstructure and thus the nonlinear dispersion can be harnessed to efficiently activate nonlinear phenomena such as mechanical four wave mixing. This systematic study reveals the key geometric parameters that enable the phonon transport in phononic crystal waveguides to be fully controlled.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据